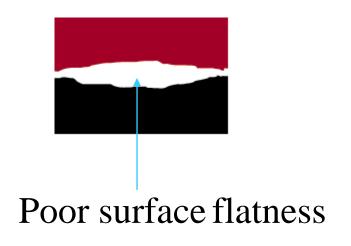
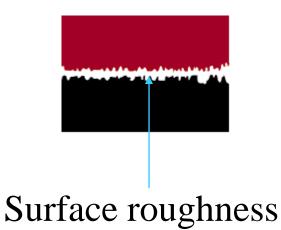
## Thermal Management Materials for PCBs used in LED Lighting Systems

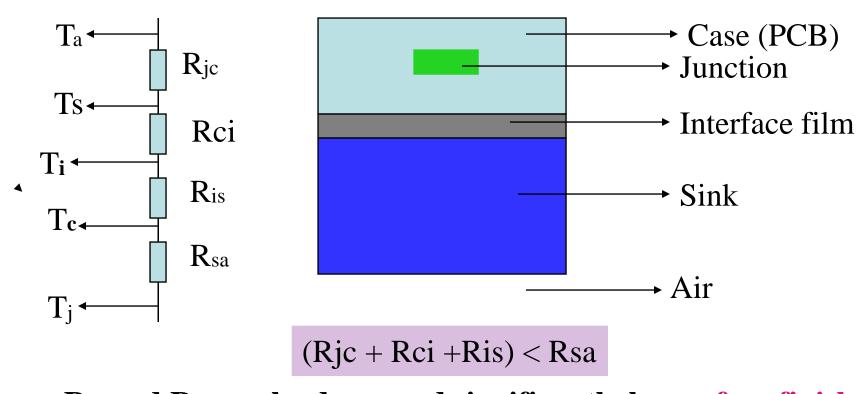
Sandy Kumar, Ph.D.


Director of Technology


American Standard Circuits, Inc.
3615 Wolf Road, Franklin Park, IL 60131

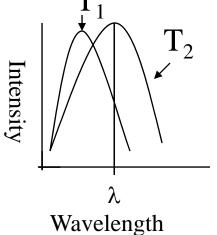
## Thermal management issues

- Solid-air interface represents the greatest barrier in thermal management
- Between two typical electronic components, <u>as much as 99% of the</u> <u>surfaces are separated by a layer of</u> <u>interstitial air</u> (*Dr. Miksa de Sorgo*,
   Electronics Cooling, 2000)


### 95-99 % Air Resistance






#### Total Thermal Resistance is given by

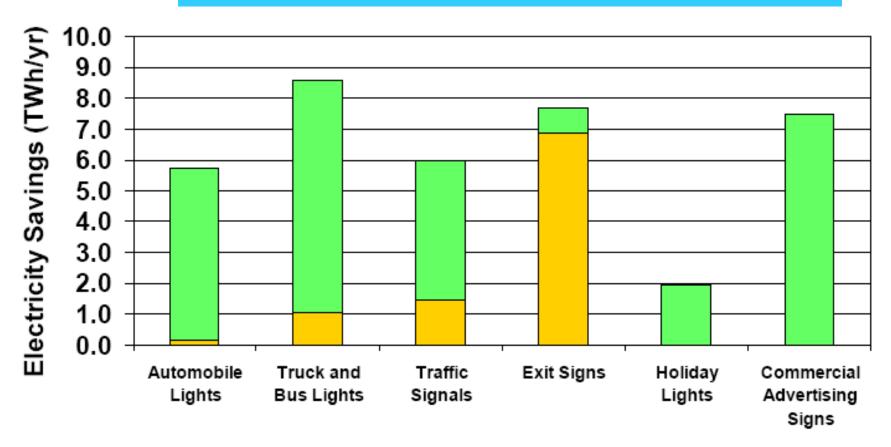
$$R_{ja} = R_{jc} + R_{ci} + R_{is} + R_{sa} = (T_j - T_a)/Q$$
  
(Q = Heat generated in Watts / Time)



R<sub>ci</sub> and R<sub>is</sub> can be decreased significantly by surface finish and type of interface material

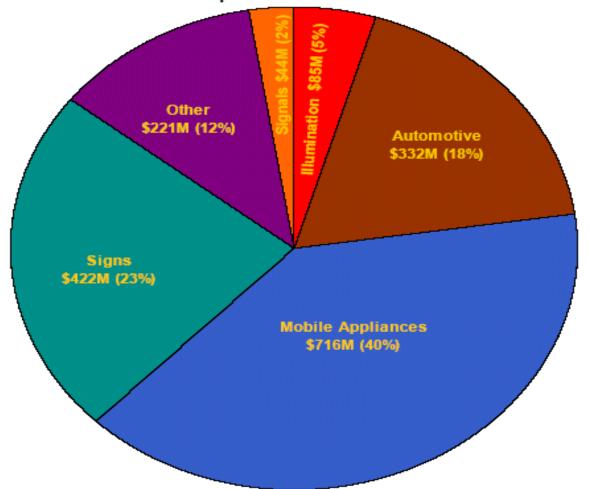
# Maximizing Thermal Emmisivity of Heat Sink




 $T_1 > T_2$ 

Heat Sink

$$\alpha_{\lambda} = \epsilon_{\lambda}$$

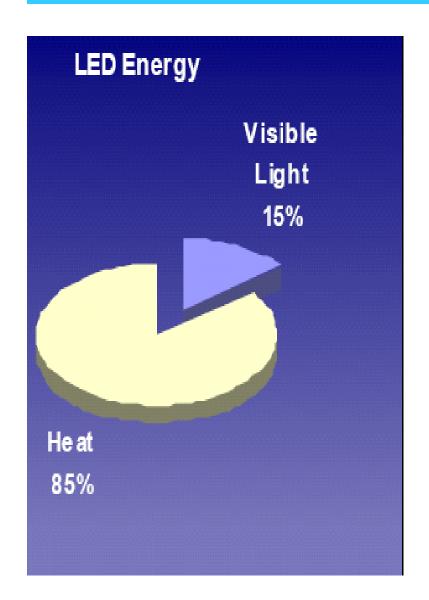

Texture the heat sink surface to tune with the operating temp.  $\lambda_{Max}$ 

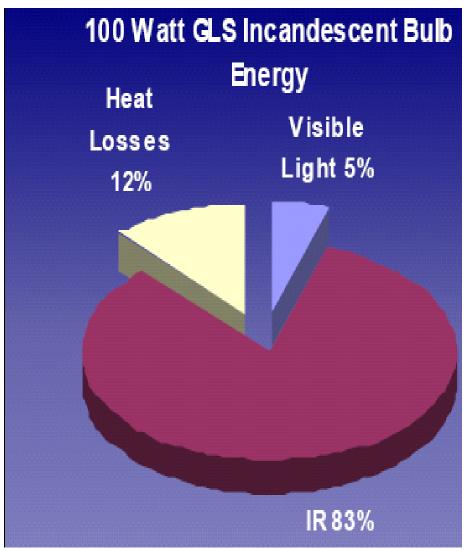
# Electricity Savings by LED (US Dept of Energy, Nov 2003)



## LED Market Potential (12/03) Excluding In-house Market!!



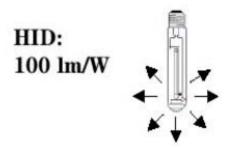




Source: Bob Steele "Strategies Unlimited" Published in "Compound Semiconductors" Dec 2003

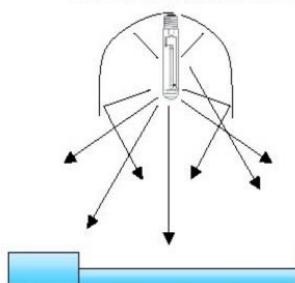
## LED Package

- LED lighting consists of optics, electronic control gear and PCB with thermal management system
- Installed into the fixture much like today's lamp and ballast fitting

## Thermal Management in LEDs





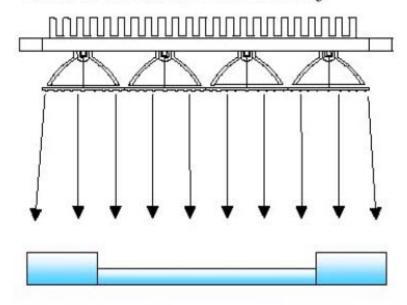


## LED Thermal Management

- Incandescent light: Most of the heat is radiated plus conduction and convection
- LED: Heat transferred only by conduction to heat sink - under sizing the heat sink in LED would give color shift

### Omni directional vs Unidirectional

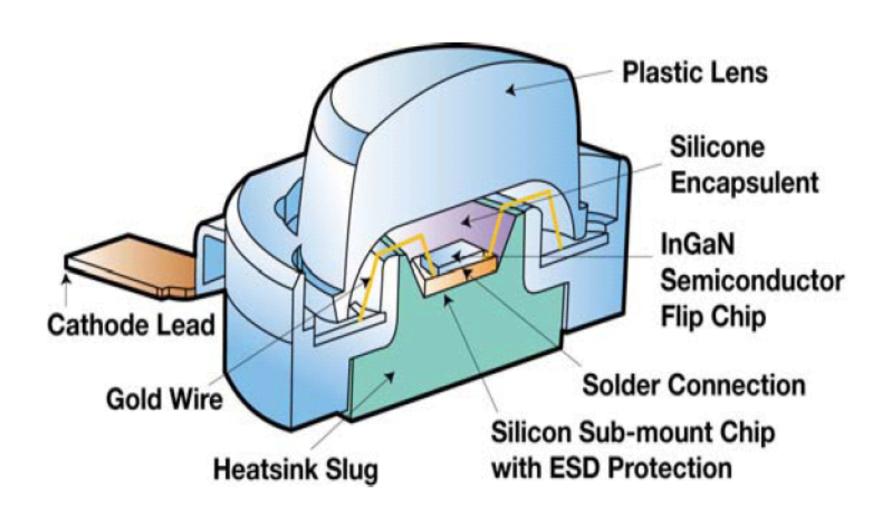


40% Utilization Efficiency

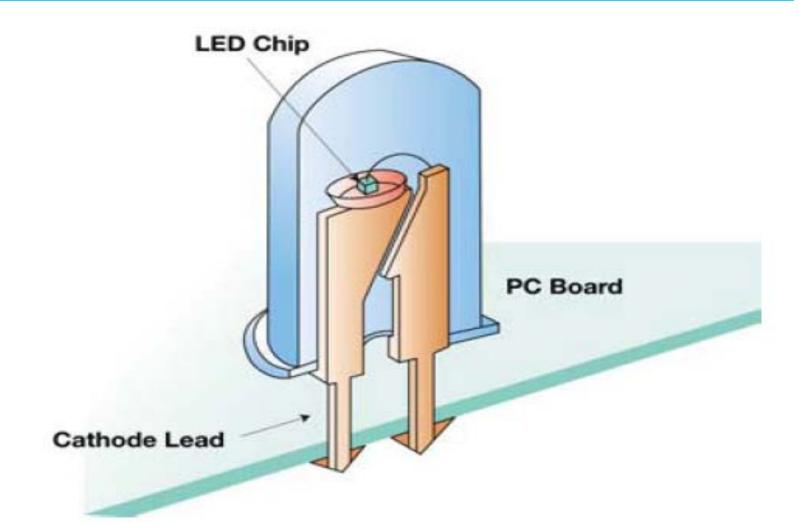



Lighting efficiency 40 lm/W

Amber LED: 50 lm/W




80% Utilization Efficiency




Lighting efficiency 40 lm/W

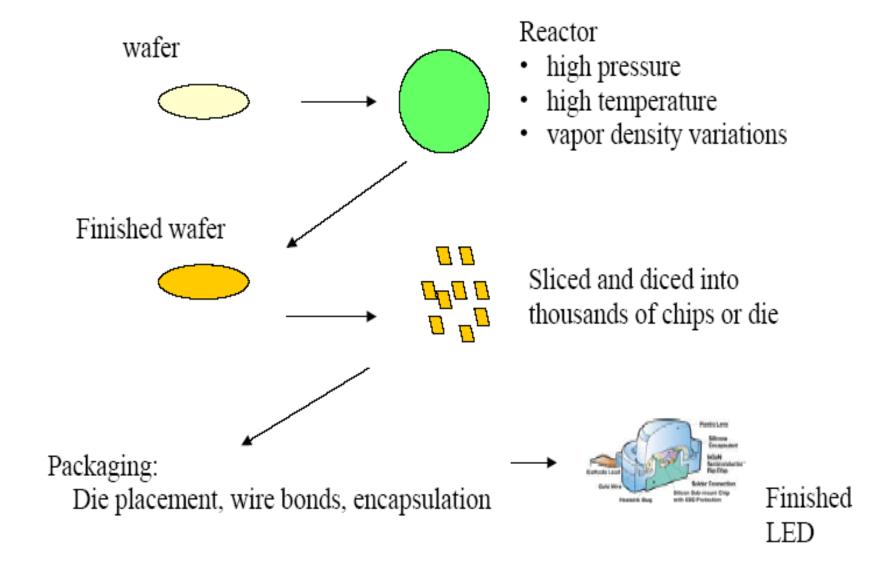
## Anatomy of High Power LED



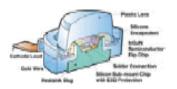
## Anatomy of Low Power 5 mm LED



### Anatomy of High Power LED


- Large metal "slug" improves heat transfer
- High current, large light emitting surface, and proportionally higher light output
- Thermal resistance of the high power units is much lower than that of a conventional 5mm LED

1 watt light source, 1sq mm area, operates at 350ma, and generates <u>25</u> <u>lumens</u> (compared to 0.25mm square, <0.1 watt, 20-30ma, and <u>1-2 lumen</u> of a standard 5mm LED).


## Anatomy of Low Power 5 mm LED

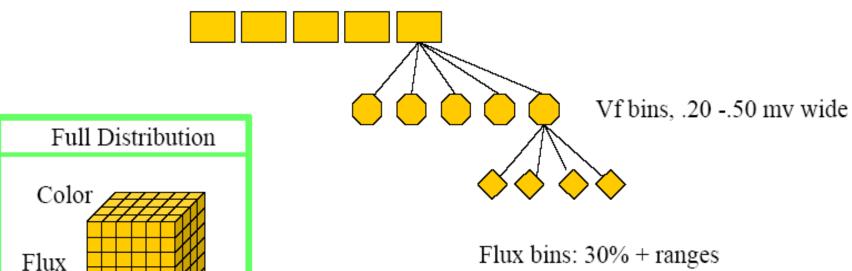
- The base pins serve as both electrical and thermal conduits, which limit how much light can be produced.
- Because of their low light output and heat transfer limitations, these small units have been main drivers for low power luminance applications.

## Tint Binning of White LEDs



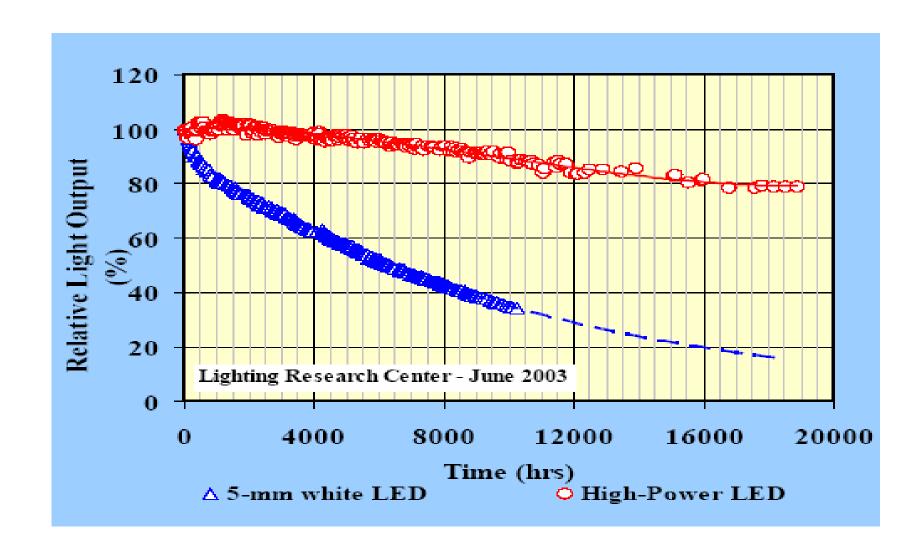
#### Tint Binning




Vf

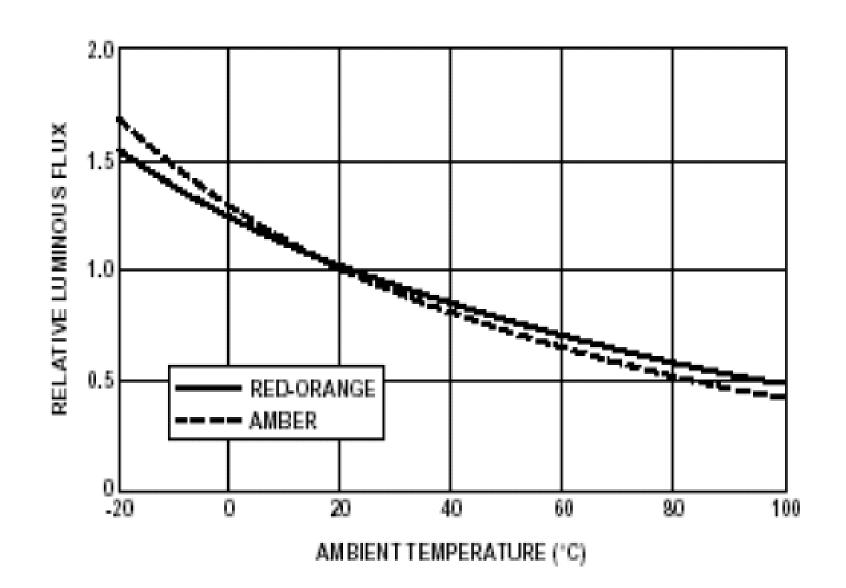
Finished LED

100% test

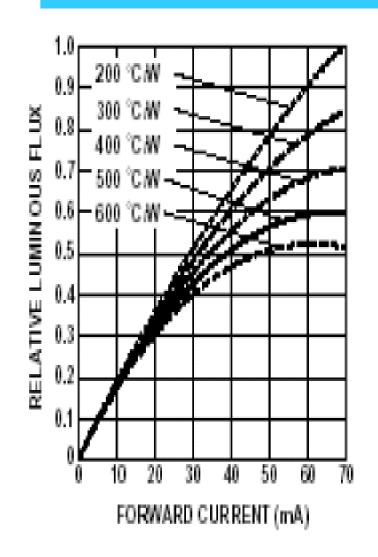

- Functional
- Color, Flux, Vf
- Each LED Labeled by bin

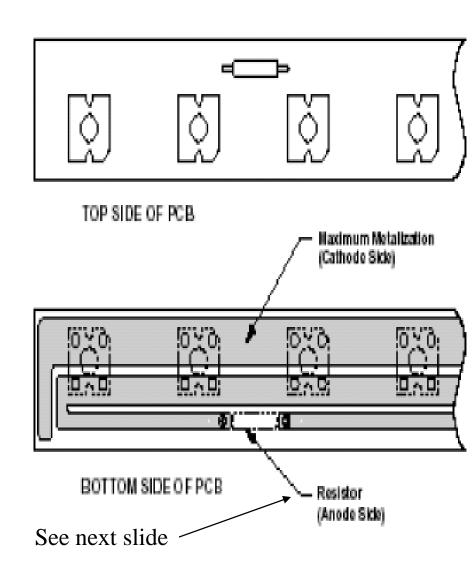
Wavelength bins, 2.5-20 nm wide




Flux bins: 30% + ranges

**Uniform White Light achieving depends on Proper Binning of individual LEDs** 





Comparison of high and low Power LEDs: RPI Lighting Research Center -Troy, NY

## LED Temperature vs Intensity (at Constant Current)



# PCB Design: Thermal Resistance vs Lumen





# Types of thermally conductive materials

- Greases
- Reactive compounds
- Elastomers
- Pressure sensitive adhesive films
   All are designed to conform to surface irregularities, thereby eliminating air voids and improving heat flow

### **Thermal Greases**

#### (THERMALLY & ELECTRICALLY CONDUCTING)

- Dispersed thermally conductive ceramic fillers in silicone or hydrocarbon oils to form a paste
- Sufficient grease is applied to one of the mating surfaces
- Grease flows into all voids during pressing to eliminate the interstitial air. Excess grease flows out
- Joint integrity maintained with spring clips or mounting hardware
- No electrical insulation provided

# Thermally Conductive Epoxy Compounds

- Are compounds converted to a cured rubber film after heating at the thermal interface
- Before curing, flows freely as grease to eliminate the air voids and reduce the thermal resistance of the interface
- Does not require mechanical fasteners to maintain the integrity of the joint
- No migration or bleeding issues like in grease
- No electrical insulation provided

# Thermally and/or Electrically Conducting Elastomers

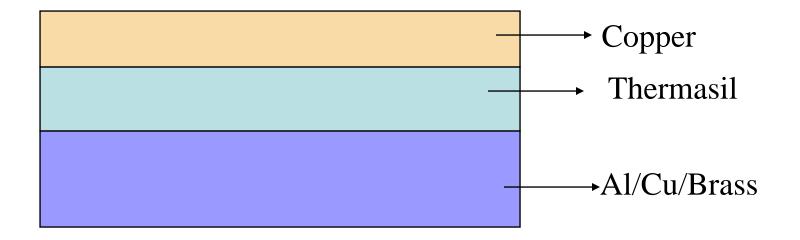
- Silicone elastomer pads filled with ceramic or metal particles
- Available in thickness from about 3 mil upward
- If required, elastomers pads can <u>provide</u> <u>electrical insulation</u> and can be used between surfaces that are at different electrical potential

## **Advantages of elastomers**

- Elastomers combine the advantages of not exhibiting melt or flow during solder flow, and remain flexible after curing to accommodate stress due to CTE differences
- Thermal conductivity: 0.5 − 5.0 W/M K
- Operating temp: 500 F (stability: -150 to +600 F)
- Stable: Si-O Bond Energy: 88-117 kcal/mol vs 83-85 kcal/mol for C-C
- Oxidative attack less for 1°H of CH<sub>3</sub> in silicone than 2° or 3°H found in epoxy

### Elastomeric ASC Materials

- Thermasil®: Flexible thermal bonding film to bond copper circuit layer with aluminum/brass/copper heat sink body
- Thermorig: Rigid thermal bonding film to bond copper foil with copper foil to construct a *rigid* thermally conducting insulator board
- Conformal Thermasil: Thermally conductive, electrically insulating conformal pad (putty type material) as interface between PCB and complex machined parts. The bonding can be permanent or temporary


### Elastomeric ASC Materials

- Silver filled silicone: Thermally and electrically conducting bonding film for bonding PCBs with heat sinks
- Silver coated aluminum filled silicone: Thermally and electrically conducting bonding film for bonding PCBs with heat sinks
- Conformal gap pad for pressure sensitive applications (PSAs): Thermally conductive, electrically insulating gap pad as interface between PCB and a flat heat sink. The assembly can be easily disassembled and reassembled.

### Thermasil<sup>R</sup> Bonding film

- Thermasil<sup>R</sup> is a patented elastomeric thermal interface dielectric adhesive material
- Can be tailored for various thickness and thermal conductivity

# Anatomy of Thermasil bonded laminate

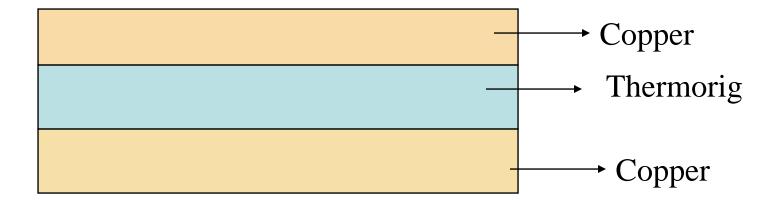


 $Cu = \frac{1}{4} Oz \text{ to } 5 Oz$ 

Thermasil: 3 mil or more

Heat Sink: Al, Cu, Brass

### Thermasil<sup>R</sup> Thermally Conductive Silicone


| Cure<br>Condition       | Sp. Gr.                       | Durometer<br>Shore A        | Tensile<br>Strength<br>PSI | %<br>Elongation   |
|-------------------------|-------------------------------|-----------------------------|----------------------------|-------------------|
| 330 F                   | 1.4                           | 80-90                       | 1220                       | 400               |
|                         |                               |                             |                            |                   |
| Tear<br>Strength<br>PPI | Resistivity,<br>Ohm<br>meters | Thermal Conductivi ty, W/mK | Flame test                 | Shelf life months |

**ASC Products** 

## Material Specs & Finish

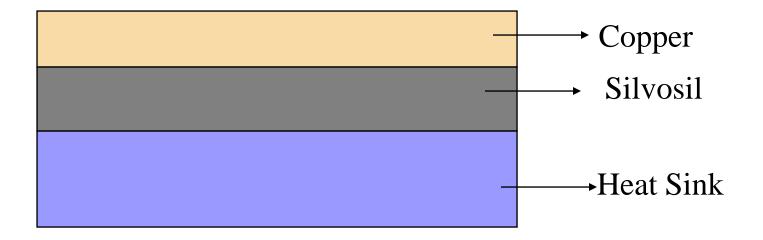
- Thermal Conductivity: 0.5 to 5.0 W/mK
- Cu Finish: HASL, Immersion Ag, Immersion Sn, ENIG, OSP, Electrolytic Ni/Au
- Al Finish: Bare, Ni, Au, Ag, Chromate

# Anatomy of Rigid Thermorig bonded laminate



 $Cu = \frac{1}{4} Oz \text{ to } 5 Oz$ 

Thermorig: 3 mil or more


Heat Sink: Al, Cu, Brass

# Hi Rigidity Thermorig Conductive Silicone

| Cure<br>Condition       | Sp. Gr.                       | Durometer<br>Shore A              | Tensile<br>Strength<br>PSI | %<br>Elongation      |
|-------------------------|-------------------------------|-----------------------------------|----------------------------|----------------------|
| 330 F                   | 1.6                           | 85-95                             | 1020                       | 150                  |
|                         |                               |                                   |                            |                      |
| Tear<br>Strength<br>PPI | Resistivity,<br>Ohm<br>meters | Thermal<br>Conductivi<br>ty, W/mK | Flame test                 | Shelf life<br>months |

**ASC Products** 

# Anatomy of Silvosil bonded laminate



 $Cu = \frac{1}{4} Oz \text{ to } 5 Oz$ 

Silvosil: 3 mil or more

Heat Sink: Al, Cu, Brass

# Electrically & Thermally Conductive Silver Silicone (Silvosil)

| Cure<br>Condition       | Sp. Gr.                      | Durometer<br>Shore A              | Tensile<br>Strength<br>PSI | %<br>Elongation   |
|-------------------------|------------------------------|-----------------------------------|----------------------------|-------------------|
| 330 F                   | 1.4                          | 80-90                             | 1220                       | 400               |
| Tear<br>Strength<br>PPI | Resistivity,<br>Ohm<br>meter | Thermal<br>Conductivi<br>ty, W/mK | Flame test                 | Shelf life months |
| 190                     | 0.0007                       | 1.8                               | Pass                       | 6                 |

# Anatomy of Metasil bonded laminate



 $Cu = \frac{1}{4} Oz \text{ to } 5 Oz$ 

Metasil: 3 mil or more

Heat Sink: Al, Cu, Brass

# Electrically & Thermally Conductive Metasil

| Cure<br>Condition       | Sp. Gr.                      | Durometer<br>Shore A              | Tensile<br>Strength<br>PSI | %<br>Elongation   |
|-------------------------|------------------------------|-----------------------------------|----------------------------|-------------------|
| 330 F                   | 2.1                          | 68-82                             | 200                        | 200               |
| Toor                    |                              |                                   |                            |                   |
| Tear<br>Strength<br>PPI | Resistivity,<br>Ohm<br>meter | Thermal<br>Conductivi<br>ty, W/mK | Flame test                 | Shelf life months |

**ASC Products** 

# Conformal Thermally Conductive Putty Material

| Cure<br>Condition       | Sp. Gr.                       | Durometer<br>Shore A              | Tensile<br>Strength<br>PSI | %<br>Elongation   |
|-------------------------|-------------------------------|-----------------------------------|----------------------------|-------------------|
| 200 F or less           | 1.3                           | 50-60                             | 625                        | 315               |
|                         |                               |                                   |                            | -                 |
| Tear<br>Strength<br>PPI | Resistivity,<br>Ohm<br>meters | Thermal<br>Conductivi<br>ty, W/mK | Flame test                 | Shelf life months |

**ASC Products** 

## **Typical Configurations**

- Cu circuit layer / Thermasil / Al heat sink
- Cu circuit layer / Thermorig prepreg / Cu ground plane / Thermasil / Al heat sink: Heat sink is electrically isolated from ground plane Cu
- Cu circuit layer / Thermorig prepreg / Cu ground plane / Silvosil or Metasil / Al heat sink: Heat sink is electrically connected to ground plane Cu

### Advanced Materials with Ultrahigh Thermal Conductivities

| Matl.           | Sp.Gr.<br>(SG) | CTE  | ITC           | TTTC          | SITC<br>(ITC/SG) |
|-----------------|----------------|------|---------------|---------------|------------------|
| CVD<br>Diamond  | 3.52           | 1-2  | 1100-<br>1800 | 1100-<br>1800 | 310-510          |
| HOPG            | 2.3            | -1.0 | 1300-<br>1700 | 10-25         | 565-740          |
| Diamond-<br>SiC | 3.3            | 1.8  | 600           | 600           | 182              |

ITC: Inplane thermal conductivity, TTTC: Through thickness TC, SITC: Specific inplane TC in W/mK.

HOTG: Highly oriented pyrolytic graphite

## Summary

- ASC has developed several thermal interface materials and thermal management solutions for various power electronics PCBs
- Thermal management of electronic packaging has reached a crucial stage calling for immediate cooling solutions
- New materials technology advances hold great promise in creating novel thermal management solutions in tailoring interfaces and heat sinks